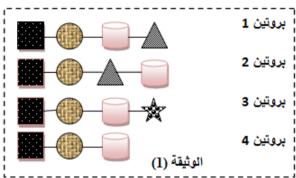
ثًا/ هواري بومدين _ سوافلية

المدة: 2 سا


المستوى : 1ج م ع و تك 1+2

اختبار الفصل الأول في مادة علوم الطبيعة و الحياة

التمرين الأول (5 نقطان):

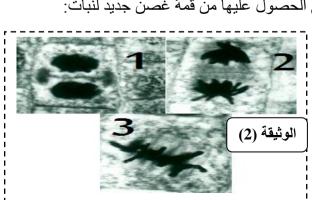
تحتاج الخلايا باستمرار إلى المواد العضوية و المعدنية من أجل الاستمرار بالقيام بمختلف نشاطاتها و لتوضيح ذلك نقدم الوثيقة (1) التي تمثل بعض البروتينات التي تناولها احد الأشخاص. [مرود المواد المواد المواد الأشخاص المواد ا

- 1. حدد ماذا تمثل الرموز المستعملة ثم قارن بين هذه البروتينات و استنتج خصوصيتها.
- 2. انطلاقا من الوثيقة و معلوماتك حدد بدقة مصير هذه البروتينات وعرف التركيب الحيوى.

التمرين الثاني (7 نقطان):

ينتج نمو الكائنات الحية عن تكاثر عدد خلاياها و تزايد أبعادها و يتطلب ذلك كميات كبيرة من المادة. لغرض فهم آليات النمو و مصدر المواد اللازمة لذلك نقدم الدراسة التالية:

> جزء محمر علوي المحمر


الجزء الأول:

تبين الوثيقة (1) تجربة التقشير الحلقى السطحى تم انجاز ها في ساق نبات مورق:

- حدد النتائج المتوقعة في الجزئين العلوي و السفلي للنبات ثم فسرها؟
- 2. بين على ماذا يدل ظهور الانتفاخ والجذور العرضية في أسفل الجزء العلوي في (ز₁) مبرزا مسار المواد الغذائية في النبات المورق و مبينا الدعامة النسيجية المتدخلة في ذاك.
 - ذلك .

الجزء الثانى: تمثل الوثيقة (2) صورا لمراحل ظاهرة حيوية مسؤولة عن النمو تم الحصول عليها من قمة غصن جديد لنبات:

- 1. تعرف على الظاهرة المبينة في الوثيقة و الأشكال (1-2-3) ثم رتبها حسب التسلسل الزمني.
- 2. ارسم المرحلة الناقصة مع كتابة جميع البيانات اللازمة تعطى (2i = 2).

الوثيقة (1)

القشرة واللحاء

3. حدد بدقة الاختلافات التي نلاحظها لو تتبعنا هذه الظاهرة في خلية حيوانية؟

التمرين الثالث (8 نقطان التمرين الثالث (8 نقطان):

يتطلب بناء المادة الحية استعمالا الطاقة ولمعرفة مصدرها و الظواهر التي تسمح بالحصول عليها عند بعض الخلايا نقدم الدراسة التالبة:

الجزء الأول:

نضع خميرة الخبز في وسط هوائي مغلق يحتوي على الغلوكوز بكمية كافية و نتتبع كمية بعض المواد الناتجة والمستهلكة، النتائج المحصل عليها مبينة في الوثيقة (1):

- 1. حلل المنحنيات الموضحة في الوثيقة (1).
 - 2. فسر التغيرات الحاصلة في هذا الوسط.

25-	CO2, CH3((mg/l)	citzon		CO2	(1	الوثيقة (
20 15-	O?			Vier.	H3CH2OH	,
10-	\rightarrow			(Hack	
5-0						
0 1	2 3	4 5	6 7 8	9 10	11 12	زمن (د) 13

11.5 د	04 د	الفترة
0.02 ملغ/ د	0.2 ملغ/ د	معدل انتاج الخميرة

الجزء الثاني:

سمحت قياسات معدل إنتاج الخميرة في الأزمنة (04) و (11.5) في درجة حرارة 37°م بالحصول على النتائج الموضحة في الجدول التالي:

- 1. علل اختلاف معدل إنتاج الخميرة ؟
- 2. تعرف الظاهرة المنتجة ل 0.02 ملغ/د من الخميرة بأنها هدم جزئي لمادة الأيض ، على ذلك ؟ الجزء الثالث:

خلال التجربة السابقة يكون التحول مزدوجا أي للمادة و الطاقة، اشرح ذلك في نص علمي انطلاقا مما ورد في التمرين و معلوماتك المكتسبة.

الكثير من الناس لا يعطون النجاح محاولة أخرى . يفشلون مرة وينتهي الأمر عندها . الكثيرون لا يتحملون ضربات الفشل المؤلمة . لكن . ان كنت على استعداد أن تتقبل الفشل وأن تتعلم منه وأن تعتبره خطوة الى الأمام . فانك بذلك تكون قد تعلمت أهم مسببات النجاح

لأساتنرة (لما وة يتنوك لكركامل التوفيق والنجاح.

الإجابة النموذجية

التمرين الأول (5 نقــاط):

العلامة	العلامة	الجواب	رقم الجواب
كاملة	مجزئة		
	0.25	تمثل الرموز المستعملة : أحماض أمينية	-1-
		المقارنة بين البروتينات:	
		~ البروتين 1 يختلف عت البروتين 2 من حيث الترتيب	
02.5	0.5*3	~ البروتين 1 يختلف عت البروتين 3 من حيث النوع	
		~ البروتين 1 يختلف عت البروتين 4 من حيث العدد	
	0.25*3	استنتاج خصوصية البروتينات: تعود خصوصية البروتينات الى عدد و نوع و ترتيب الأحماض الأمينية الداخلة	
		في تركيبها	
	0.5*3	مصير البروتينات: تتفكك الى أحماض أمينية تنقل عبر الدم الى الخلايا أين يتم اعادة بنائها من جديد (التركيب	
		الحيوي)	
02.5	01	تعريف التركيب الحيوي: هي آلية حيوية تسمح ببناء مواد معقدة مثل البروتينات انطلاقا من مواد بسيطة	-2-
		كالأحماض الأمينية	

التمرين الثاني (7 نقـــاط):

العلامة	العلامة	الجواب				
		الجواب				
كاملة	مجزئة					
		النتائج المتوقعة :	-1-			
	0.25	~ في الجزء العلوي: نمو عادي				
	0.25	 في الجزء السفلي: تاخر النمو 				
01.5		التفسير:				
	0.5	 نمو الجزء العلوي رغم التقشير لوجود الأوراق في هذا الجزء والتي تركب المادة الغذائية 		京		
	0.5	 تأخر النمو في الجزء السفلي لعدم وصول النسغ الكامل من الجزء العلوي من جهة وعدم وجود 		الجزء الأول:		
		أوراق في هذا الجزء من جهة أخرى .		ئۇل		
	0.25*2	يدل الانتفاخ والجذور العرضية في نهاية الجزء السفلي: على تراكم المادة الغذائية للنسغ الكامل (بسبب	-2-	••		
		عدم انتقالها الى الجزء السفلي)				
01	0.25*2	مسار الْمادة الغذائية : يتم تركيب المواد الغذائية في الأوراق (تركيب ضوئي)				
		ثم تنتقل عبر الأوعية ال <mark>لحائية</mark> إلى جميع أجزاء النبات .				
	0.5	التعرف على الظاهرة الحيوية : الانقسام الخيطي المتساوي	-1-			
02	0.25*3	التعرف على الأشكال: الشكل1: المرحلة النهائية _ الشكل2: المرحلة الانفصالية _ الشكل3: المرحلة الاستوائية				
	0.25*3	ترتيب الأشكال: الشكل3 ── الشكل2 → الشكل 1				
		الريسم : جدارسطولودي لر صبغيات مبعثرة ومضاعفة	-2-	7.		
	0.25*5	ووال العلاق الدودي		.3		
	0.25	العنوان:		الجزء الثاني:		
02	0.5	دقة الرسم:		7.		
		غشاء مبولي				
		رسم تغطيطي للمرحلة التمييدية لعلية نباتية (2ن=2)				

0.5	0.25*2	وجه الاختلاف الذي نلاحظه لو تتبعنا هذه الظاهرة في خلية حيوانية هو حدوث انخماص (اختناق) في المرحلة	-3-	
		النهائية بدل الصفيحة الخلوبة		

التمرين الثالث (8 نقطاط):

		(0 2 2 2 2)	ين سنت	,
العلامة	العلامة	الجواب	جواب	رقم ال
كاملة	مجزئة			
	0.25	تحليل منحنيات الوثيقة 3: توضح المنحنيات تغيرات كمية O2، O2 و الكحول الايثيلي عند وضع خميرة الخبز	-1-	
		في وسط هوائي مغلق		
	0.5	- منحني O ₂ : نلاحظ تناقص سريع في تركيز ₂ O في الوسط الى ان ينعدم بعد 08 د .		
02	0.5	- منحني CO ₂ : نلاحظ تزايد سريع في كمية CO ₂ الى ان تبلغ قيمة 22 عند الزمن 08 د لتتناقص وتيرة الزبادة		
		بعد ذلك		
	0.5	 منحى الاثانول :قبل الدقيقة 06 كانت منعدمة لتظهر بعد ذلك وتتزايد حتى تبلغ قيمة 15 في الدقيقة 13 		京
	0.25	الاستنتاج: خميرة الخبز قامت بعملية التنفس في وجود 02ثم قامت بعملية التخمر عند نفاذ 02		الجزء الأول:
		تفسير التغيرات	-2-	يُوز
	0.5*2	- يتناقص تركيز O ₂ ثم ينعدم وهذا راجع الى استهلاكه من قبل الخميرة في حين تتزايد كمية CO ₂ وهذا راجع		
01.5		الى طرحة من قبل الخميرة اثناء قيامها بعملية التنفس.		
	0.5	- يرجع ظهور الايثانول و تزايد كميته الى ان الخميرة .استنفذت كل O ₂ الموجود في الوسط فانتقلت من		
		التنفس الى التخمر في غياب O ₂ لتأمين الطاقة اللازمة		
		تعليل سبب اختلاف القياسات :	-1-	
01	0.5	تتكاثر خلايا خميرة الخبز في الوسط الهوائي بسرعة مقارنة مع خلايا خميرة الخبز الموضوعة في الوسط اللاهوائي و	•	
<u>. </u>	0.5	خلك راجع إلى إنتاج طاقة كبيرة في التنفس مقارنة مع الطاقة الضئيلة مع التخمر		烹
		- تعليل التسمية: - تعليل التسمية:	-2-	الجزء الثاني
	0.25	تعرف ظاهرة التخمر على انها هدم جزئي لمادة الايض لأنها تنتج طاقة قابلة للاستعمال ضئيلة و	_	
0.5	0.25	عرف عمر المسافقة كامن في جزيئات الايثانول يبقى الجزء الأكبر من الطاقة كامن في جزيئات الايثانول		.;
	0.25	يبقى اعبره الا تبر من التفاقة فامن في جريفات الايفانون		
	0.5	يتطلب نمو الكائنات الحية استعمالا للمادة باختلاف مصدرها وتحويل للطاقة من خلال التنفس و التخمر		
		حيث يتم خلالهما تحول مزدوج للمادة و الطاقة معا فكيف يتم ذلك؟		
		تسمح عمليتي التنفس و التخمر بتحويل الطاقه و الماده معا كما يلي:		
	0.25*4	 في الوسط الهوائي تتم عمليه التنفس التي يتم من خلالها هدم كلى للمادة العضوية (مادة الايض) في الخلية 		
				京
03		جاهزة للاستعمال ينتشر جزء منها على شكل حرارة·		الجزء الثالث
	0.25*4	 في الوسط اللاهوائي تتم عمليه التخمر التي هي هدم جزئي لمادة الأيض يتم خلالها تحويل جزئي للطاقة 		*J.
		المخزنة في مادة الأيض إلى طاقة كيمائية قابلة لللإستعمال في حين أن الباقي من الطاقة لا يزال مخزن في		
		الكحول الإثيلي		
	0.5	يتم خلال التنفس و التخمر تحويل الطاقة الكامنة الى طاقة قابلة للاستعمال من طرف الخلية		