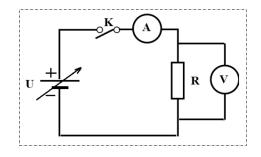


الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية مديرية التربية الجزائر وسط

مدرسة "الرّجاء والتفوّق" الخاصّة Ecole Erradja wa Tafaouk É C O L E P R I V É E

المستوى: الأولى ثانوي ج م ع ت


مدرسة "الرّجاء والتفوّق"الخاصّة -بوزرىعة -

المادة: التكنولوجيا

المدة! ساعتان

اختبار الفصل الثانى

التّمرين الأوّل:

التركيب التّالي يسمح بقياس شدّة التّيار الكهربائي المار في المقاومة R حسب قيمة التّوتّر المتغيّر U والنّتائج المحصّل علها مبيّنة في الجدول أدناه.

- 1) أرسم الميزة (U=f(i.
- 2) فسر باختصار هذه الميزة.
- 3) أحسب ميل المستقيم النّاتج ثم استنتج ما الذي يمثّله هذا الميل كهربائيّا.

9	8	7	6	5	4	3	2	1	0	U(V)
0.351	0.312	0.273	0.234	0.195	0.156	0.117	0.078	0.039	0	<i>i</i> (A)

التمرين الثاني:

نريد قياس التوتربين طرفي بطارية ذات توتر 4,5V لاستعمالها في تشغيل مصباح. نستعمل من أجل ذلك الجهاز متعدد القياسات.

- 1) ماهي طبيعة التوتر المقاس ؟ (مستمر أو متناوب).
- V, Ω , COM , A , 10A (2) من بين المداخل التالية: اختر المدخلين الذين نوصل فهما سلكي القياس.
- DCV , ACV , DCA , Ω : التوتر مفتاح القراءة لقراءة هذا التوتر التوتر عند القراءة لقراءة القراءة الق
 - - 5) أثناء القياس لاحظنا ظهور الإشارة (-) . كيف نزيلها؟

التمرين الثالث:

أراد تلميذ من قسم سنة أولى جذع مشترك علوم و تكنولوجيا مشاهدة شريط وثائقي حول مصادر الطّاقة الكهربائيّة مدّته ساعة و أربعون دقيقة 1h40mn و ذلك من خلال جهاز تلفار إستطاعته 90W:

- 1) أحسب بالوحدة KWh كميّة الطّاقة الكهربائيّة التي يستهلكها التّلفاز.
- 2) إذا علمت أنّ سعر 1KWh هو DA4.17، استنتج سعر الاستهلاك الموافق لمشاهدة هذا الشّريط الوثائقي.
 - 3) أذكر إسم أربع محطات لإنتاج الطّاقة الكهربائيّة:
 - 4) أرسم مخططا توضيحيا مبسطا تبيّن فيه مراحل مسار الطّاقة الكهربائية.

التمرين الرّبع: ملاحظة: تعاد هذه الورقة مع ورقة الإجابة

ضع علامة X في الخانة المناسبة (إجابة واحدة فقط صحيحة و الإجابات المتعدّدة ملغاة)

$L = \frac{R. \rho}{S}$	$S = \frac{R.L}{\rho}$	$R = \frac{\rho.S}{L}$	01
$\mathbf{R} = \mathbf{U} \cdot \mathbf{I}^2$	I = U.R	U = R.I	R = U.I
$\mathbf{p} = \mathbf{I}^2 +$	$\mathbf{p} - \mathbf{p} \mathbf{I}^2$	$\mathbf{p} = \mathbf{n} \cdot \mathbf{r}^2 +$	D = D II +

$P = I^2.t$	$P = R. I^2$	$P = U.I^2.t$	P = R.U.t

$P = \frac{U^2}{R}$	$P = \frac{U}{R^2}$	$P = \frac{R}{U^2}$	$P = \frac{U^2}{R^2}$

$I = \sqrt{\frac{W}{R.t}}$	$I = \frac{W}{R} \sqrt{t}$	$I = \sqrt{\frac{R.t}{W}}$	$I = \sqrt{\frac{W \cdot t}{R}}$

التمرين الخامس:

ضع علامة X في الخانة المناسبة (إجابة واحدة فقط صحيحة والإجابات المتعدّدة ملغاة)

2200W	220W	22000W	الاستطاعة المبددة بفعل جول في مقاومة كهربائية قيمتها Ω 22 حين نطبق علها
			توترا220۷
تمغنط	حرارة	ضغط	
			فعل جول هو ضياع للطاقة على شكل
THT	ВТ	MT	
			يتم نقل الطَّاقة الكهربائية بتوتّرات
لايمكن	عكسيا	طرديا	61
			قيمة التوتّر تتناسب مع قيمة شدّة التّيّارالكهربائي
10A	10mA	100mA	2200/1 = 1 1 = 1
			شدة التيار الذي يعبر مقاومة كهربائية قيمتها Ω 22 حين نطبق عليها توترا Ω
16.5V	1.65V	165V	مقدار التوتر الكهربائي الذي يجب تطبيقه بين طرفي مقاومة 330Ω حتى يمر فها
			تيار <i>شد</i> ته 5 m A
فولطمتر	واطمتر	امبيرمتر	71 51 61 1 1 1 1 1 1 1 1 1
			نقيس شدة التيار الكهربائي بواسطة

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية مديرية التربية الجزائر وسط

مدرسة "الرّجاء والتفوّق" الخاصّة - بوزريعة-

التاريخ: 2020/2019

المادة: تكنولوجيا (هندسة كهربائية)

المستوى: الأولى ثانوي ج م ع ت

المدة: ساعتان

تصحيح إختبار الفصل الثاني

التمرين1:

- 1. رسم الميزة (U=f(i). الرسم: المنحنى دالة تآلفية (تمر من المبدأ)
- 2. فسر باختصار هذه الميزة. (يمكن الاشارة إلى النسبة الثّابتة (التناسب بين التوتر و التيار)
- 3. أحسب ميل المستقيم النّاتج ثم استنتج ما الذي يمثّله هذا الميل كهربائيًا الميل يمثل المقاومة

<u>التمرين2:</u>

ماهى طبيعة التوتر المقاس ؟ (مستمر).

1. المداخل: V, COM,

2. مفتاح القراءة: DCV

3. المعيار: 10V

4. أثناء القياس لاحظنا ظهور الإشارة (-). كيف نزيلها؟ عكس القطبين

التمري<u>ن3</u>:

- 1. أحسب بالوحدة KWh كميّة الطّاقة الكهربائيّة التي يستهلكها التّلفاز. W=P.t
- 2. إذا علمت أنّ سعر 1KWh هو DA4.17، استنتج سعر الاستهلاك الموافق لمشاهدة هذا الشّريط الوثائقي.
 - 3. أذكر إسم أربع محطات لإنتاج الطَّاقة الكهربائيّة: الحرارية المائية الهوائية النووية
- 4. أرسم مخططا توضيحيا مبسطا تبيّن فيه مراحل مسار الطّاقة الكهربائية. يجب على الاقل ذكر: الانتاج النقل التوزيع الاستهلاك مع ذكر تحويل الرفع و النقل بتوترات جد مرتفعة و تحويل الخفض

تعاد هذه الوثيقة مع ورقة الاجابة

التمرين 4: ضع علامة X في الخانة المناسبة (إجابة واحدة فقط صحيحة و الإجابات المتعدّدة ملغاة)

$L = \frac{R.\rho}{S}$	$S = \frac{R.L}{\rho}$	$R = \frac{\rho.S}{L}$	$\rho = \frac{R.S}{L}$
			X

$\mathbf{R} = \mathbf{U} \cdot \mathbf{I}^2$	I = U.R	U = R.I	R = U.I
		X	

$$P = I^2.t$$
 $P = R.I^2$ $P = U.I^2.t$ $P = R.U.t$

$P = \frac{U^2}{R}$	$P = \frac{U}{R^2}$	$P = \frac{R}{U^2}$	$P = \frac{U^2}{R^2}$
X			

$I = \sqrt{\frac{W}{R.t}}$	$I = \frac{W}{R} \sqrt{t}$	$I = \sqrt{\frac{R.t}{W}}$	$I = \sqrt{\frac{W \cdot t}{R}}$
X			

التمرين5: ضع علامة X في الخانة المناسبة (إجابة واحدة فقط صحيحة و الإجابات المتعدّدة ملغاة)

2200W	220W	22000W	لاستطاعة المبددة بفعل جول في مقاومة كهربائية قيمتهاΩ 22 حين نطبق عليها	
X			توترا220V	
تمغنط	حرارة	ضغط	فعل جول هو ضياع للطاقة على شكل	
	X		فعل جول هو صبياع تنطقه على تنكل	
THT	BT	MT	يتم نقل الطّاقة الكهربائية بتوتّرات	
X			يتم تعل الطاقة الكهربانية بنوترات	
لايمكن	عكسيا	طرديا	قيمة التوتّر تتناسب مع قيمة شدّة التّيّار الكهربائي	
		X	قيمه التوثر تتاسب مع قيمه سده التيار المهرباتي	
10A	10mA	100mA	شدة التيار الذي يعبر مقاومة كهربائية قيمتهاΩ 22 حين نطبق عليها	
X			توترا220۷	
16.5V	1.65V	165V	مقدار التوتر الكهربائي الذي يجب تطبيقه بين طرفي مقاومة 330Ω حتى يمر	
	X		فیها تیار شدته 5 m A	
فولطمتر	واطمتر	امبيرمتر	نقيس شدة التيار الكهربائي بواسطة	
		X	تعيس شده التيار الشهرباتي بواست	