الجمهورية الجزائرية الديمقراطية الشعبية

مديرية التربية لولاية غليزان السنة الدراسية: 2025/2024

وزارة التربية الوطنية ثانوية واد الجمعة

المدة:01سا

الفرض الثاني في مادة: الرياضيات

المستوى:أولى ج م ع ت

التمرين الأوّل:

$$0 \le y \le 6$$
 و $|x-2| \le 1$ و عداد حقیقیة حیث: $x = 0$

 $1 \le x \le 3$) بين أن

$$z = \frac{\sqrt{x+y}-1}{2x^2+y} : عدد حقیقی حیث$$

. z^3 و z^2 و ما استنتج المقارنة بين $z \leq 1$ و أثبت أن $z \leq 1$

التمرين الثاني:

1)أكتب كل من A و B دون رمز القيمة المطلقة حيث:

$$B = \left| \sqrt{7} - 4 \right| + \left| 4 - 2\sqrt{7} \right| + \sqrt{\left(\sqrt{7} - 2\right)^2}$$
 $A = \left| 1 - 2\sqrt{5} \right|$

2) باستعمال المسافة حل المعادلة والمتراجحة التاليتين:

$$|x+2| < |x-4|, |x-3| = 1$$

3) باستعمال برهان فصل الحالات حل المتراجحة التالية:

$$|3x-6|+|2x-6|=7$$

التمرين الثالث:

1)أكمل الجدول:

القيمة المطلقة	المسافة	المجال	الحصر	المر ك ز c	نصف قطر ۲
		I =]-3;11[
			≤ <i>x</i> ≤5	1	
		J =	8≤ <i>x</i> ≤20		
$\left x + \frac{2}{5} \right \le \frac{3}{5}$					

 $I \cup J$ عين $I \cap J$ عين (2

مديرية التربية لولاية غليزان

السنة الدراسية: 2025/2024

وزارة التربية الوطنية

ثانوية واد الجمعة

<mark>التمرين الأوّل</mark>:

حل النموذجي الفرض الثاني في مادة: الرياضيات الأستاذة : جلام

المستوى:أولى ج م ع ت

التمرين الثاني: 06.5 ن

1) أكتب كل من A و B دون رمز القيمة المطلقة حيث:

$$B = \left| \sqrt{7} - 4 \right| + \left| 4 - 2\sqrt{7} \right| + \sqrt{\left(\sqrt{7} - 2\right)^2} \quad g \quad A = \left| 1 - 2\sqrt{5} \right|$$

$$0.5 \quad A = \left| 1 - 2\sqrt{5} \right| = 2\sqrt{5} - 1 \quad \text{eais} \quad 1 - 2\sqrt{5} < 0 \quad \text{tight}$$

$$\left| \sqrt{7} - 4 \right| = 4 - \sqrt{7} \quad \text{eais} \quad \sqrt{7} - 4 < 0 \quad \text{tight}$$

$$\left| 4 - 2\sqrt{7} \right| = 2\sqrt{7} - 4 \quad \text{eais} \quad 4 - 2\sqrt{7} < 0 \quad \text{tight}$$

$$\left| \sqrt{\left(\sqrt{7} - 2\right)^2} \right| = \left| \sqrt{7} - 2 \right| = \sqrt{7} - 2 \quad \text{eais} \quad \sqrt{7} - 2 > 0 \quad \text{eais}$$

$$B = 4 - \sqrt{7} + 2\sqrt{7} - 4 + \sqrt{7} - 2 = 2\sqrt{7} - 2 \quad \text{eais}$$

2) باستعمال المسافة حل المعادلة والمتراجحة التاليتين:

01
$$|x-3|=1$$

x نضع A فاصلتها b و b

$$AM = 1$$
تكافئ $|x - 3| = 1$

 $S = igl\{2;4igr\}$ ومنه مجموعة حلول المعادلة هي

$$|x+2| < |x-4|$$

x نضع A فاصلتها B و B فاصلتها A

$$AM < BM$$
 تكافئ $|x+2| < |x-4|$

 $]-\infty;1$ ومنه M تكون اقرب لـ A أي حلول المتراجحة هي

3) باستعمال برهان فصل الحالات حل المتراجحة التالية:

$$|3x-6|+|2x-6|=7$$

$$x=2$$
 نضع $3x-6=0$ نضع

$$x=3$$
و کافئ $2x-6=0$

X	$-\infty$ 2	2 3	3 +∞
3x - 6	İ	-	+
3x-6	6-3x	6-3x	3x-6
2x-6	- (+	+
2x-6	6-2x	2x-6	2x-6
P	12 - 5x	-x	5x - 12

$$|3x-6|+|2x-6|=7$$
 حل المعادلة

03.5ن

 $0 \le y \le 6$ و $|x-2| \le 1$ و x = 0

01
$$1 \le x \le 3$$
: اثبات أن

b و a نحسب حدا المجال $|x-2| \le 1$

$$b = c + r = 2 + 1 = 3$$
 و $a = c - r = 2 - 1 = 1$

 $1 \leq x \leq 3$ ومنه $|x-2| \leq 1$ تکافئ $|x-2| \leq 1$

$$z = \frac{\sqrt{x+y}-1}{2x^2+y} : عدد حقیقي حيث$$

 $0 \le z \le 1$: اثبات أن $z \le 1$

$$z = \left(\sqrt{x+y} - 1\right) \times \frac{1}{2x^2 + y}$$
 لدينا

 $0 \le y \le 6$ و $1 \le x \le 3$ عداد حقيقية حيث: $x \le 3$

$\sqrt{x+y}-1$ حصر

1 < x + y < 9 لدينا $\begin{cases} 1 \le x \le 3....(1) \\ 0 \le y \le 6...(2) \end{cases}$ بجمع متباينتين (1) و (2)نجد

الجذر $3 < \sqrt{x+y} < 3$ نضيف 1- نجد:

02

$$0 < \sqrt{x+y} - 1 < 2 \dots (I)$$

$$\frac{1}{2x^2+y}$$
 حصر

$$\begin{cases} 1 < x^2 < 9(3) \\ 0 < y < 6....(2) \end{cases}$$
 : عمريع متباينة (1) نجد :
$$\begin{cases} 1 \le x \le 3.....(1) \\ 0 \le y \le 6....(2) \end{cases}$$

$$\begin{cases} 2 < x^2 < 18 . (4) \\ 0 < y < 6 (2) \end{cases}$$
 نضرب متباینة (1)في 2 نجد :

$$2 < 2x^2 + y < 24$$
: بجمع متباینتین (4) و (2) بجمع

$$\frac{1}{24} < \frac{1}{2x^2 + y} < \frac{1}{2}...(II)$$
 المقلوب

بضرب المتباینة (۱) و (۱۱) نجد
$$\frac{0}{2x^2+y} < \frac{2}{2}$$
 نجن (۱۱) و (۱۲) نجد

 $0 \le z \le 1$

$$0.5$$
 . $z^3 < z^2 < z$ فإن $0 \le z \le 1$:

نفصل الحالات التالية

$$x \in]-\infty; 2$$
 لما (1 الحالة 1)

$$x=1$$
 نكافئ $|3x-6|+|2x-6|=7$

$$|3x-6|+|2x-6|=7$$
 ومنه 1 حل للمعادلة $1\in]-\infty;2[$ و

$$x \in [2;3[$$
 Lal (2)

$$x = -7$$
 تکافئ $-x = 7$ تکافئ $|3x - 6| + |2x - 6| = 7$

$$|3x-6|+|2x-6|=7$$
 و منه 7- ليس حل للمعادلة 7 $=7$ ومنه

$$x = \frac{19}{5}$$
 تكافئ $5x - 12 = 7$ تكافئ $|3x - 6| + |2x - 6| = 7$ تكافئ $x \in [3; +\infty[$ لما

$$|3x-6|+|2x-6|=7$$
 ومنه $\frac{19}{5}$ حل للمعادلة $\frac{19}{5}\in[1;+\infty[$ و

$$\left\{1; \frac{19}{5}\right\}$$
 ومنه مجموعة حلول المعادلة $\left|3x - 6\right| + \left|2x - 6\right| = 7$ هي

10ن

التمرين الثالث:

08.75

1)اكمال الجدول:

القيمة المطلقة	المسافة	المجال	الحصر	المر ك ز c	نصف قطر ۲
$ x-c \le r$	$d(x;c) \le r$	[c-r;c+r]	$c - r \le x \le c + r$	$c = \frac{a+b}{2}$	$r = \frac{b-a}{2}$
x-4 < 7	d(x;4) < 7	I =]-3;11[-3 < x < 11	4	7
$ x-1 \le 4$	$d(x;1) \le 4$	[-3;5]	$-3 \le x \le 5$		4
$ x-14 \le 6$	$d(x;14) \le 6$	J = [8; 20]	$8 \le x \le 20$	14	6
$\left x + \frac{2}{5}\right \le \frac{3}{5}$	$d(x; -\frac{2}{5}) \le \frac{3}{5}$	$\left[-1;\frac{1}{5}\right]$	$-1 \le x \le \frac{1}{5}$	$-\frac{2}{5}$	$\frac{3}{5}$

<u>3</u>) التبرير:

$$r$$
 لدينا $x\in=[8;20]$ لدينا لا نحسب المركز

$$\begin{cases} c = \frac{a+b}{2} = \frac{8+20}{2} = \frac{28}{2} = 14 \\ r = \frac{b-a}{2} = \frac{20-8}{2} = \frac{12}{2} = 6 \end{cases}$$

4)التبرير:

$$b$$
 هو a لدينا $\left|x+rac{2}{5}
ight| \leq rac{3}{5}$ لدينا $a=c-r=-rac{2}{5}-rac{3}{5}=-1$ $b=c+r=-rac{2}{5}+rac{2}{5}=rac{1}{5}$

التبرير

1) التبرير:

$$x \in]-3;11[$$
 لدينا $x \in]-3;11[$ لدينا $c = \frac{a+b}{2} = \frac{-3+11}{2} = \frac{8}{2} = 4$
$$\begin{cases} c = \frac{b-a}{2} = \frac{11-(-3)}{2} = \frac{14}{2} = 7 \end{cases}$$

<u>2)</u> التبرير :

$$1+r=5$$
 لدينا $c=1$ و $b=c+r=5$ ومنه $a=c-r=-3$ و فإن $c=r=4$

$I \bigcup J$ تعيين $I \cap I$ و I

1.25

I	J	$I \cup J$	$I\cap J$
]-3;11[[8;20]]-3;20]	[8;11[